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Temporal correlations versus noise in the correlation matrix formalism:
An example of the brain auditory response

J. Kwapień,1 S. Drożdż,1,2 and A. A. Ioannides3
1Institute of Nuclear Physics, PL–31-342 Krako´w, Poland

2Institut für Kernphysik, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany
3Laboratory for Human Brain Dynamics, Brain Science Institute, RIKEN, Wako-shi, 351-0198, Japan

~Received 14 February 2000; revised manuscript received 15 May 2000!

We adopt the concept of the correlation matrix to study correlations among sequences of time-extended
events occurring repeatedly at consecutive time intervals. As an application we analyze the magnetoencepha-
lography recordings obtained from the human auditory cortex in the epoch mode during the delivery of sound
stimuli to the left or right ear. We look into statistical properties and the eigenvalue spectrum of the correlation
matrix C calculated for signals corresponding to different trials and originating from the same or opposite
hemispheres. The spectrum ofC largely agrees with the universal properties of the Gaussian orthogonal
ensemble of random matrices, with deviations characterized by eigenvectors with high eigenvalues. The prop-
erties of these eigenvectors and eigenvalues provide an elegant and powerful way of quantifying the degree of
the underlying collectivity during well-defined latency intervals with respect to stimulus onset. We also extend
this analysis to study the time-lagged interhemispheric correlations, as a computationally less demanding
alternative to other methods such as mutual information.

PACS number~s!: 87.19.Dd, 05.45.Tp, 05.40.2a
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I. INTRODUCTION

Studying complex systems is typically based on analyz
large, multivariate data. Since, in general terms, comple
is primarily connected with coexistence of collectivity an
chaos or even noise, it is of crucial importance to find
appropriate low dimensional representation of an underly
high dimensional dynamical system. In many cases this a
at denoising and compressing dynamic imaging data. Su
problem is particularly frequent in the area of the brain
search where a complex but relatively sparse connecti
prevails. Understanding brain function requires a charac
ization and quantification of the correlations in the sign
generated at different areas.

Direct pathways connect the sensory organs with the
responding primary cortical areas. In the auditory system
interest here, delivery of a stimulus to either the left or t
right ear is relayed to both primary auditory cortices, w
stronger and earlier response on the contralateral side.
first cortical response arrives very early, well within 20 m
but it is too weak to be mapped noninvasively from the o
side. Successive waves of cortical activation follow with t
strongest around 80–100 ms. For a simple stimulus and
cognitive task required the response as seen in the avera
effectively over within the first 200–300 ms. More elabora
analysis shows that the ‘‘echoic memory’’ lasts for a fe
seconds@1,2#. Furthermore the activity in each area of th
cortex, including the auditory cortex and its subdivisions
determined by a plethora of interactions with other areas
not just the direct pathway from the cochlea. The variabi
of the evoked response possibly reflects the many way
given input in the periphery can be modulated before
strong cortical activations emerge@3#. Our treatment of the
activity from each auditory cortex as an independent sig
bypasses this complexity by lumping many effects into
PRE 621063-651X/2000/62~4!/5557~8!/$15.00
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formation theoretic measures. The advantage of this
proach is that it leads to quantitative analysis of stocha
and collective aspects of the complex phenomena in the
ditory cortex and the brain at large.

In our previous work@4# we have established the exis
tence of correlations between activity in the two audito
cortices, using mutual information@5# as a measure of statis
tical dependence. The analysis showed that collectivity
noise were present in the data@6#.

Usually, one analyzes a set of simultaneously recor
signals which emerge from the activity of subcomponents
the system. Consequently, the presence of correlation
such signals is to be interpreted as a certain sort of coop
tion among several or all of these sub-components. Tho
closely related, our present approach is somewhat differ
Instead of studying many subsystems at the same time
deal with two brain areas only and aim at identifying repe
tive structures and their time relations in consecutive in
pendent trials of delivery of the stimulus. We thus constr
the correlation matrix~which is a normalized version of th
covariance matrix@7,8#! whose entries express correlatio
among all the trials that are delivered by experiment. T
difference relative to a conventional use of the correlat
matrix is that now the indices of this matrix are labelin
different presentations of the stimulus and not different s
systems. The resulting eigenspectrum is then expecte
carry information about deterministic, nonrandom properti
separated out from the noisy background whose nature
also be quantified.

II. EXPERIMENT AND DATA

The details of the experiment can be found in our ear
articles @8,3,4#. Here, for completeness, we sketch brie
only the most important facts. Five healthy male volunte
participated in the auditory experiment. We used
5557 ©2000 The American Physical Society
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2337-channel, two-dewar magnetoencephalography~MEG!
apparatus~each dewar covered the temporal area in o
hemisphere! to measure the magnetic field generated by
cortical electric activity@9#. The stimuli were 1 kHz tones
lasting 50 ms each delivered in three runs to the left, righ
both ears in 1 s intervals. The single trial of delivery o
stimulus was repeated 120 times for each kind of stimu
tion. The cortical signals were sampled with 1042 Hz f
quency. Pilot runs were used to place each dewar in turn
that both the positive and negative magnetic-field extre
were captured by the 37 channel array. With such a cove
it is feasible to construct linear combinations of the sign
which act like virtual electrodes ‘‘sensing’’ the activity in th
auditory cortex@3#. This computation can be done at ea
timeslice of each single trial independently, thus building
timeseries for each auditory cortex for further analysis@4#.

Delivery of a sound stimulus or any change in the co
tinuous stimulus causes a characteristic activity in the a
tory cortex which is best illustrated by averaging many su
events@10#. The~averaged! evoked potential, appears in bo
hemispheres and has a form of several positive and neg
deflections of the magnetic field. The most prominent feat
of the average is a high amplitude deflection at about 80–
ms after the onset of the stimulus~so called M100!. The
details of the average evoked response are hardly visibl
each single trial, partly because of strong background ac
ity, which is not related to the stimulus and partly because
the latency jitter introduced by the many feed-forward a
feed-back interactions that occur intermittently between
periphery and the cortex. If as the signal we consider wha
fairly time locked to the stimulus onset, then the signal-
noise ratio is much improved by averaging the signal over
single trials.

We will consider two runs, corresponding to stimuli d
livered to the left and right ear. Each run comprisesN
5120 single trials, thus we have 120 signals for each he
sphere and each kind of stimulation. The signals are re
sented by the time seriesxa

L,R(t i) of length ofT51042 time
slices (i 51, . . . ,1042, a51, . . . ,120) each evenly cover
ing 1 s time interval. Since all the stimuli were provided
precisely specified equidistant instants of time, all the se
can be adjusted so that the onset of each stimulus co
sponds to the same time slicei 5230. Each signal starts 22
ms before and ends 780 ms after the onset. A band pass
was applied in the 1–100 Hz range.

For a simple auditory stimulus and no cognitive task
sociated with it, the average evoked response lasts for 2
300 ms; this is also reflected in our earlier mutual inform
tion study of the signals@4#. Since other parts of each serie
are associated with activity which is not time locked to t
stimulus, the appearance of similar events in both he
spheres and across trials results in correlations that are m
stronger in the first few hundred milliseconds. The prese
of correlations and collectivity cannot be excludeda priori
from other periods and it is therefore of considerable inte
to compare two such intervals. We have settled on two s
intervals, each with 250 timeslices: the first we call t
evoked potential~EP! interval and it covers the first 25
timeslices after stimulus onset, i.e., 250 time slicesi
5231,480)~2–241 ms!; this is the period where the averag
signal is strong. The second interval we consider as base
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or background~B! and for this we choose the interval from
501 ms and ending 740 ms after the onset of the stimu
( i 5751,1000). Since the time between stimuli is 1 s our
choice avoids the time just before stimulus onset, when
ticipation and expectation is high while being as far as p
sible from the stimulus onset.

III. CORRELATION MATRIX ANALYSIS

For the two time seriesxa(t i) and xb(t i) of the same
length, (i 51, . . . ,T) one defines the correlation function b
the relation

Ca,b5

(
i

@xa~ t i !2 x̄a#@xb~ t i !2 x̄b#

A(
i

@xa~ t i !2 x̄a#2(
j

@xb~ t j !2 x̄b#2

, ~1!

wherex̄ denotes a time average over the period studied.
two sets ofN time seriesxa(t i) each (a,b51, . . . ,N) all
combinations of the elementsCa,b can be used as entries o
the N3N correlation matrixC. By diagonalizingC

Cvk5lkv
k, ~2!

one obtains the eigenvalueslk (k51, . . . ,N) and the corre-
sponding eigenvectorsvk5$va

k %.
In the limiting case of entirely random correlations th

density of eigenvaluesrC(l) defined as

rC~l!5
1

N

dn~l!

dl
, ~3!

wheren(l) is the number of eigenvalues ofC less thanl, is
known analytically@11#, and reads

rC~l!5
Q

2ps2

A~lmax2l!~l2lmin!

l
. ~4!

Here

lmin
max5s2~111/Q62A1/Q! ~5!

with lmin<l<lmax, Q5T/N>1, and wheres2 is equal to
the variance of the time series~unity in our case!. Interesting
is both a potential agreement of our calculated eigensp
trum of C with this formula as well as deviations. In fact th
deviations are even more interesting because they can
used to quantify certain system specific nonrandom prop
ties of the system.

For our present detailed numerical analysis we select
characteristic subjects~DB and FB! out of all five subjects
who participated in the experiment. The background activ
in both subjects does not reveal any dominant rhythm wh
if present in two signals, may introduce additional, spon
neous correlations not related to the stimulus. The signal
DB reveal relatively strong EP’s and a good signal-to-no
ratio ~SNR!. FB is somehow on the other side of the spe
trum of subjects, as its EP’s are small and hardly visible a
the signals are dominated by a high-frequency noise wh
results in a poor SNR. The signals forming pairs in Eq.~1!
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may come either from the same or from the opposite he
spheres. The first possibility we term theone-hemisphere
correlation matrix and the latter one is thecross-hemisphere
correlation matrix. The first matrix is, by definition, re
symmetric and the second one must be real but, in gener
is not symmetric.

An interesting global characteristic of the dynamics e
coded inC is provided by the distribution of its elements. A
example for such a distribution is shown in Fig. 1 for t
one-hemisphere correlation matrix. As one can see in
background region ~solid lines! the distributions are
Gaussian-like centered at zero. This implies that the co
sponding signals are statistically independent to a large
tent. A significantly different situation is associated with t
evoked potential part of the signal. The most obvious eff
is that the center of mass of the distribution is shifted
wards the positive values. In this respect there is also a
ference between the subjects: the average value of the
ments for DB ~approximately 0.35! is considerably higher
than for FB~0.05!. This indicates that the signals in FB a
on average less correlated even in the EP region than
signals recorded from DB. This may originate from eithe
smaller amplitude of the collective response of FB’s cor
or from a much smaller signal-to-noise ratio. For the cro
hemisphere correlation matrix the relevant characteristics
similar. The only difference is that the shifts~in both sub-
jects! are slightly smaller.

More specific properties of the correlation matrix can
analyzed after diagonalizingC. The one-hemisphere correla
tion matrix is real and symmetric and consequently all
eigenvalues are real. The structure of their distribution
displayed in Fig. 2. The eigenvalues are shown for sev
characteristic cases: two subjects, the left and right he
spheres and two regions~EP and B!.

The structure of the eigenvalue spectra depends on

FIG. 1. Distributions ofCa,b for the one-hemisphere correlatio
matrix. The upper panel corresponds to DB and the lower on
FB. The solid lines display such distributions evaluated in the
gions beyond evoked activity~B! and the dashed lines in the E
region.
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subject but first of all on the region of the signal. There is
clear separation of the largest eigenvalue from the rest of
spectrum in the EP region in DB. This effect is much le
pronounced for FB and considerably reduced in B. This
consistent with the distribution of the corresponding mat
elements as shown in Fig. 1. To a first approximation
distribution of such elements in EP can be described a
shifted Gaussian@12#:

C5G1gU, ~6!

whereG denotes a Gaussian matrix centered at zero andU is
a matrix whose entries are all unity.g is a real number 0
<g<1. Of course, the rank ofU is one and, therefore, th
second term alone in Eq.~6! develops only one nonzero e
genvalue of magnitudeg. Since the expansion coefficients o
this particular state are all equal this assigns a maximum
collectivity to such a state. Ifg is significantly larger than
zero the structure ofC is predetermined by the second ter
in Eq. ~6!. As a result the spectrum ofC comprises one
collective state with large eigenvalue. Since in this caseG
constitutes only a ‘‘noise’’ correction togU all the other
states are connected with significantly smaller eigenvalu
From the point of view of the analysis performed here t
first component of Eq.~6! corresponds to an irrelevant sig
nal. This may actually be noise, although it could easily
background activity not related to the stimulus, or even
tivity related to the processing of the stimulus but in a rath
distinct and different way for each trial. The second term
Eq. ~6! corresponds to activity time locked to the stimul
onset in each single trial. Since the center of mass of
distribution of matrix elements is shifted more towards t
positive values for DB~and thusg is larger! than for FB, the
largest eigenvalue is significantly larger in the former ca
Within the conventional spatiotemporal description based
the correlation matrix similar characteristics of collectivi
have recently been identified@12# in correlations among
companies on the stock market.

to
-

FIG. 2. Structure of the eigenvalue spectra of the correlat
matrices~one-hemisphere correlations! for the two discussed re
gions of the signals~evoked potential - EP, background activity - B!
for DB ~upper part! and FB~lower part!. In each panel there are tw
spectra of eigenvalues, corresponding to the right hemisph
~circles! and the left one~triangles!. The eigenvalues are ordere
from the smallest to the largest.
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In relation to Eq.~4! the presence of a strongly separat
eigenvalue is one obvious deviation which is consistent w
the nonrandom character of the corresponding eigens
Further deviations can be identified by comparing the bou
aries of our calculated spectrum tolmin

max of Eq. ~5!. For Q
5T/N5250/120 we obtainlmin50.944 andlmax52.866.
Clearly, there are several more eigenvalues which are la
thanlmax. This may indicate that the corresponding eige
states absorb a fraction of the collectivity. However, a clo
inspection shows that also on the other side of the spect
there are eigenvalues smaller thanlmin and basically no
empty strip between 0 andlmin can be seen. By this ou
empirical distribution seems to indicate that an effectiveQ
which determines this distribution is significantly small
thanQ5T/N. This, in turn, may signal that the informatio
content in the time series of lengthT is equivalent to a sig-
nificantly shorter time series. This conclusion is supported
the time dependence of the autocorrelation function ca
lated @6# from our signals. It drops down relatively slowl
and reaches zero only after 20–30 time steps between
secutive recordings. Memory effects are present and he
neighboring recordings during the same trial are not entir
independent and this also applies to components which
flect the background activity. It is well known that neur
activity is characterized by a set of finite correlation time
and the suggestion has been made that continuity of aw
ness is quantized in a hierarchy of temporal scales@13#. The
time scale of 25 ms, corresponding to 40 Hz, org band
activity has been proposed as a fundamental unit~of
memory!: synchronized neural activity within and acro
brain areas, like the auditory cortex and its subdivisions,
combined to represent a unified perception even if elicited
different segments or aspects of an object. This requires
maintenance of an active state for this amount of time
hence naturally leads to the correlations that our data im
On the hardware side there are plenty of time-delayed p
cesses and interactions in the neuronal circuits of the b
which will produce activity in neighboring times with share
information. It is interesting to note that there exist eigenv
ues larger thanlmax ~and smaller thanlmin as well! also in
the B region for both subjects even though the distribution
Ca,b is perfectly Gaussian in this case. This indicates
existence of further correlations among the matrix eleme
of C that are of different origin than those which can
quantified in simple terms of Eq.~4!.

One could explicitly test the related role of memory e
fects by recomputingC with appropriately sparser time se
ries. Unfortunately, the number of recordings covering
single trial is too small for a systematic study of such effec
Instead we perform the following analysis: we generate
new time seriesda(t i) such thatda(t i)5xa(t i 11)2xa(t i),
i.e., the time series of differences. These destroy the mem
effects and now the autocorrelation function drops do
very fast. Figure 3 shows the density of eigenvalues of
correlation matrix generated fromda(t i). Now the agreemen
with Eq. ~4! improves and becomes relatively good even
the EP region already when every second time pointi from
da(t i) is taken, such that the total number of them rema
the same (T5250). Taking more distant points, leaving o
intermediate ones, drastically reduces the correlation
tween the remaining successive points. The above thus i
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trates the subtleties connected with the correlation ma
analysis of time series. Replacing our original time ser
xa(t i) by da(t i) improves the agreement with Eq.~4! and
even the collective state connected with EP dissolves. Th
due to the disappearance inda(t i) of the memory effects
present inxa(t i). On the level ofda the correlations are thu
essentially purely random and therefore, in the following,
return to our original time series.

Another statistical measure of spectral fluctuations is p
vided by the nearest-neighbor spacing distributionP(s). The
corresponding spacingss5l i 112l i are computed after
renormalizing the eigenvalues in such a way that the aver
distance between the neighbors equals unity. A related
cedure is known as unfolding@14–16#. Two characteristic
and typical examples of such distributions corresponding
EP and B regions are shown in Fig. 4~for DB!. While in
both cases these distributions agree well with the Wig
distribution which corresponds to the Gaussian orthogo
ensemble~GOE! of random matrices, some deviations on t
level of larger distances between neighboring states are m
visible in the EP than in the B region. This in fact is cons
tent with the presence of larger eigenvalues in the EP cas
shown in Fig. 2. Interestingly, the bulk ofP(s) even here
agrees well with GOE. In order to further quantify the o
served deviations we also fitted the histograms with the
called Brody distribution

Pr~s!5~11r !asr exp~2as(11r )!, ~7!

wherea5@G„(21r )/(11r )…#11r . Depending on a value o
the repulsion parameterr, this distribution describes the in
termediate situations between the Poisson~no repulsion,r
50) and the standard Wigner (r 51) distribution ~GOE!.
The best fit in terms of Eq.~7! gives r 50.95 in the EP and

FIG. 3. Density of eigenvalues of the correlation matrix calc
lated from theT5250 points of the time seriesda(t i) of increments
of the original time seriesxa(t i), i.e., da(t i)5xa(t i 11)2xa(t i). In
the lower panel every second point ofda(t i) is taken but the num-
ber of such points is still 250. The dashed line corresponds to
distribution prescribed by Eq.~4!.
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r 50.93 in the B case, respectively. Thus we clearly see
on the level of the nearest-neighbor spacing distribut
P(s) the original measurements share the universal pro
ties of GOE. Here, similarly as in strongly interacting Fer
systems@17#, P(s) thus proves more robust against corre
tions than the dependences expressed by Eq.~4!. A departure
betraying some collectivity is nevertheless present in bot
and EP intervals, but even in the EP interval the effect of
stimulus does not change this picture significantly: it resu
in one or at most a few remote distinct states in the sea
low eigenvalues of the GOE type.

In order to further explore this effect we look at the d
tribution of the eigenvector componentsva

k for the same
cases as in Fig. 4. Figure 5 displays such a distribution g
erated from eigenvectors associated to one hundred lo
eigenvalues~main panels of the Figure! calculated both for
the EP~upper part! and B~lower part! regions. The result is
a perfectly Gaussian distribution in both cases. However
EP a completely different distribution~upper inset! corre-
sponds to the state with the largest eigenvalue. The cha
teristic peak located at around 0.1 documents that the ma
ity of the trials contribute to this eigenvector with simila
strength. This eigenvector is thus associated with a typ
behavior of many single-trial signals. The component val
in the largest eigenvalue in B also deviate from a Gauss
distribution ~inset in the lower part of Fig. 5!, although in
this case their distribution is largely symmetric with resp
to zero. This makes the twok5120 eigenvectors in B and E
regions approximately orthogonal which indicates a differ
mechanism generating collectivity in these two regions.

A more explicit way to visualize the differences amo
the eigenvectors is to look at the superposed signals

FIG. 4. Nearest-neighbor~s! spacing distribution~histogram! of
the eigenvalues ofC for subject DB. The upper panel correspon
to the evoked potential~EP! region of the time series and the lowe
panel to the background~B! activity part. The distributions have
been created after unfolding the eigenvalues. The smooth s
curves illustrate the Wigner distribution and the dashed curves
the best fit in terms of the Brody distribution.
at
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~ t i !5 (

a51

120

va
k xa~ t i !. ~8!

For k5120, 119, and 75 these are shown in Fig. 6 using
eigenvectors calculated for the EP~middle panel! and for B
~lower panel! regions. The signals corresponding to the la
est eigenvalues (k5120) develop the largest amplitudes
both cases. In the first case~EP! it very closely resembles a
simple average~upper panel! over all the trials. In the second
case~B! the largest eigenvalue also shows a degree of
lectivity even though the corresponding simple average
velops no coherent structure. Also, when signals weighted
the eigenvectors with the highest eigenvalue in EP and B
compared we see that there is essentially no amplificatio
the other region~i.e., in the EP interval when the B-weighte
signals are used!. In addition, keeping in mind in this con
nection both the difference in distribution ofCa,b in EP and
B ~Fig. 1!, respectively, and the asymmetry~EP! versus sym-
metry ~B! in the distribution of the largest eigenvector com
ponents~insets to Fig. 5!, which makes the two eigenvector
approximately orthogonal, this provides another indicat
that different mechanisms are responsible for the collectiv
at these two different latency ranges. Analogous effects

lid
re

FIG. 5. Distribution of the eigenvector components (va
k ) for EP

~upper part! and B ~lower part! regions ~subject DB!. The main
panels correspond to one hundred lowest eigenvalues, while
insets show plots of the same quantity for the eigenvector co
sponding tolmax (k5120). For comparison, Gaussian best fits a
also presented~dotted lines!. ~Note different scales in the figure.!
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collectivity for k5119 are already much weaker and disa
pear completely as an example ofk575 shows.

We now turn to the cross-hemisphere correlation functi
obtained by forming pairs in Eq.~1! from the time series
representing opposite hemispheres@xa

L(t i) with xb
R(t i)]. In-

troducing in addition a time-lagt between such signals@4#,
and dropping the rather obvious superscripts for the left
right hemisphere, we define a delayed correlation matrix

Ca,b~t!5

(
i

@xa~ t i !2 x̄a#@xb~ t i1t!2 x̄b#

A(
i

@xa~ t i !2 x̄a#2(
j

@xb~ t j1t!2 x̄b#2

,

a,b51, . . . ,N. ~9!

A similar cross-correlation time-lag function has be
employed in the past to investigate across trials correlatio
but because of the high computational load of an exhaus
comparison across different delays the analysis was
stricted to the computation of the time-lagged cro
correlation between the average and individual single tr
@8#. The spectral decomposition of the cross-correlation m
trix provides a more elegant approach, requiring the solu
of the t-dependent eigenvalue problem

C~t!vk~t!5lk~t!vk~t!, k51, . . . ,N. ~10!

SinceC can now be asymmetric its eigenvalueslk can be
complex ~but forming pairs of complex conjugate value
sinceC remains real! and in our case they generically a
complex indeed. One anticipated exception may occur w
the similarity of the signals in both hemispheres takes pl

FIG. 6. The comparison of the signal obtained by the sim
average over all 120 trials~upper panel! and the signals obtaine
from Eq. ~8! for both regions, EP~middle part! and B ~lower part!
for subject DB. Signals in the middle and lower panels denote
perpositions fork5120 ~solid line!, k5119 ~dashed line!, and k
575 ~dotted line!.
-
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for a certain value oft. In this caseC is dominated by its
symmetric component and the effect, if present, is thus
pected to be visible predominantly on the largest eigenva
It is more likely to see this effect in the EP region of the tim
series. We thus calculate the cross-hemisphere correla
matrix from the T5250-long subintervals ofxa

L(t i) and
xb

R(t i) covering the EP’s. Figure 7 presents the resulting r
and imaginary parts of the largest eigenvalue as a functio
t for two subjects and two kinds of stimulation~left and right
ear!. As it is clearly seen the large real parts are accompan
by vanishing imaginary parts. Based on this figure seve
other interesting observations are to be made. First of
lmax(t) strongly depends ont and reaches its maximum fo
a significantly nonzero value oft. This reflects the already
known fact@4# that the contralateral~opposite to the side the
stimulus is delivered! hemisphere responds first and thus t
maximum of synchronization occurs when the signals fr
the opposite hemispheres are shifted in time relative to e
other.~Heret.0 means that the signal from the right hem
sphere is retarded relative to the left hemisphere and
opposite applies tot,0.) Furthermore, the magnitude (t
;10 ms! of the time delay estimated from locations of th
maxima agrees with an independent estimate based on
mutual information@4#. Even a stronger degree of synchr
nization for DB relative to FB, as can be concluded from
significantly larger value oflmax in the former case, agree
with this previous study.

Finally, Fig. 8 shows some examples of the eigenva
distribution on the complex plane. In the EP region the s
cific value of the time delay (t57 ms, upper panel! corre-
sponds to maximum synchronization between the two he
spheres for this particular subject. Here we see one stro
repelled eigenvalue with a large real part (;36.5) and a

e

-

FIG. 7. lmax(t) calculated from the cross-hemisphere corre
tion matrix. The upper part corresponds to DB and the lower par
FB. Both panels illustrate two kinds of stimulation: left ear~LE!
and right ear~RE!. The solid lines denote the real part oflmax,
while the dashed and dotted ones are its imaginary part. The sig
t denotes retardation of a signal from the right hemispheret
.0) or the left one (t,0).



ty
n
u
on
e
ts
ls
re
th
v

al

m
on

for-
iv-
at
ic-
dy

ing
ngle
tion
in
nto
ical

ack-
with
po-
ered
and
m-
tor.

ut
In
an-
n-
ure
his
ot
lus
ha-
are

e of
o a
sult

he
ity
ei-
iv-
to

was
et-
pli-
ng

mi-
the
tion
eris-
ose

ss
B

-

d
ry
he

PRE 62 5563TEMPORAL CORRELATIONS VERSUS NOISE IN THE . . .
vanishing imaginary part. An interesting sort of collectivi
can be inferred from an example shown in the middle pa
(t5240 ms! of Fig. 8. Here the largest eigenvalue is abo
a factor of 3 repelled more in the imaginary axis directi
than in the real direction. This indicates that the antisymm
ric part ofC is dominating it which expresses certain effec
of antisynchronization~synchronization between the signa
opposite in phase!. In the B region, on the other hand, the
are basically no such effects of synchronization between
two hemispheres and, consequently, the complex eigen
ues are distributed more or less uniformly around~0,0! as an
example in the lowest panel of Fig. 8 shows.

IV. CONCLUSIONS

The standard application of the correlation matrix form
ism is to study correlations among~nearly! coincident events
in different parts of a given system. A typical principal ai
of the related analysis is to extract a low-dimensional, n

FIG. 8. Examples of the eigenvalue distribution of the cro
hemisphere correlation matrix for the right ear stimulation for D
obtained from the EP region~upper and middle panels! and the B
region~lower panel!. All parts present the distributions on the com
plex plane. The eigenvalues fort57, which corresponds to the
maximum oflmax(t) in Fig. 7, are shown in the upper panel an
the eigenvalues fort5240 ~corresponding to strong antisymmet
of C) are presented in the middle one. A typical distribution of t
eigenvalues in the B region is illustrated in the lower part.~Note
different scale in the middle panel.!
.
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random component which carries some system specific in
mation from the whole multidimensional background act
ity. The advantage of the correlation matrix formalism is th
it allows us to directly relate the results to universal pred
tions of the theory of random matrices. In the present stu
we have used the correlation matrix as a tool for analyz
single trial responses, treating the time series of each si
trial as a separate system element. A dendrogram descrip
of the distribution of auditory evoked MEG responses
single trials has demonstrated that single trials partition i
sets, with each set possibly reflecting a different anatom
route from the ear to the auditory cortex@3#. Consistently, in
the present approach the spectrum separates into the b
ground of noise eigenvalues and a group of eigenstates
large eigenvalues. The distribution of eigenvector com
nents associated to the highest eigenvalue in EP is ord
towards high correlations with almost no negative values
a sharp distribution. This implies that the trials quite syste
atically involve a component prescribed by this eigenvec
This is in agreement with earlier findings@3#, but now it
comes directly from the time series of single trials witho
any processing and artificial partition into groups of trials.
addition, the correlation matrix approach enabled us to qu
tify the nature of the background brain activity at long late
cies~B!, where the precise time locking is lost but a meas
of collectivity remains. The mechanism responsible for t
collectivity appears different from that for EP, but it is n
clear whether this is because the time locking to stimu
onset is relaxed or because of a truly new neuronal mec
nisms. In any case for both EP and B periods the results
largely consistent with the Gaussian orthogonal ensembl
random matrices: the introduction of the stimulus leads t
small perturbation of the background state, again a re
echoing the conclusion of@3#, but now reached within a
firmer and better understood mathematical framework. T
analysis offers a way of comparing the degree of collectiv
from the properties of the eigenvectors with the highest
genvalues, and crucially to quantify the degree of collect
ity. The beginnings of how the method can be extended
study correlations between the two sources of signals
also outlined. In this case the correlation matrix is asymm
ric and results in complex eigenvalues. An immediate ap
cation of such an extension is to look at correlations amo
signals recorded in our experiment from the opposite he
spheres. Introducing in addition the time lag between
signals one can study the effects of delayed synchroniza
between the two hemispheres. The quantitative charact
tics of such synchronization remain in agreement with th
found by other means@4#.
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